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Chemoresponsive gels undergoing the Belousov-Zhabotinsky (BZ) reaction exhibit self-sustained pulsations,
which can be harnessed to perform mechanical work. In technological applications, the gels would typically be
confined between hard surfaces and thus, it is essential to establish how confinement affects these distinctive
oscillations. Using theory and simulation, we pinpoint regions in phase space where the dynamic behavior of
BZ gels critically depends on the presence of confining walls. We then illustrate how the wave propagation
within thin samples can be tailored by selectively introducing “cut outs” in the bounding surfaces. The
oscillations in the latter films are localized in specified areas, so the system contains well-defined oscillatory
and nonoscillatory regions. The cut outs provide an effective means of tuning the mechanical action within the
film and provide a route for tailoring the functionality of the material.

DOI: 10.1103/PhysRevE.80.056208

I. INTRODUCTION

The discovery of the oscillating chemical reaction known
as the Belousov-Zhabotinsky (BZ) reaction [1,2] facilitated
the rapid development of the field of nonlinear chemical dy-
namics. The temporal oscillations and spatial concentration
patterns produced via this reaction provided researchers with
an exceptional “laboratory” for systematically exploring sys-
tems far from equilibrium [3,4]. In an important step toward
harnessing this oscillatory behavior for technological appli-
cations, Yoshida er al. [5-9] incorporated the BZ chemistry
into responsive polymer gels and thus, for the first time, used
this reaction to power a mechanical action. A vital aspect of
these BZ gels is that the ruthenium catalysts are covalently
bonded to the polymer chains; the BZ reaction causes Ru to
undergo periodic oxidation and reduction that dynamically
alter the hydrophilicity of the polymers and thereby drive the
rhythmic swelling and deswelling of the gel [5-9]. Due to
this mechanism, millimeter-sized gels can oscillate autono-
mously for hours [8] and can be “refueled” by simply adding
more reactants to the surrounding solution. From a funda-
mental viewpoint, the BZ gels constitute a unique example
of a far-from-equilibrium system where nonlinear chemical
kinetics is coupled to the elastodynamics of a polymer net-
work. In terms of practical applications, the autonomously
oscillating BZ gels can provide exciting new opportunities
for creating biomimetic systems that transduce chemical en-
ergy into mechanical work [9].

A scientific challenge to fully exploiting the properties of
these BZ gels is to establish routes for controlling their spa-
tiotemporal behavior so that the chemomechanical waves
propagate in user-specified patterns. In this context, it is
worth recalling that in many potential applications, these ac-
tive gels will be localized on a surface or within a confined
geometry. Thus, it is particularly important to determine how
confining hard walls can be utilized to manipulate the pattern
formation and yield well-defined behavior.

In previous studies, we have effectively considered the
influence of uniform confining walls on one-dimensional
[10] or two-dimensional systems [11]. For example, we con-
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sidered a one-dimensional BZ gel, which can be viewed as a
long thin sample confined within a capillary tube [10].
Through this investigation, we demonstrated that changing
the sample size via stretching or compression could dramati-
cally alter the dynamic behavior of the system. In the latter
studies, the catalyst for the reaction was localized within
specific patches in the polymer network, so that the BZ re-
action occurred only within these patches. Moreover, the
polymer network was assumed be to a nonresponsive BZ gel,
i.e., it did not undergo swelling and deswelling in response to
the ongoing BZ reaction.

Herein, we undertake the first studies to analyze how
three-dimensional BZ gels that contain a homogeneous dis-
tribution of catalyst respond to restrictions that are imposed
by bounding walls. In carrying out these investigations, we
specifically focus on the responsive BZ gels. As we show
below, the removal of just a portion of a wall can drive a
previously stationary domain into an oscillatory state and in
this manner, we can create materials with controlled arrange-
ments of pulsatile and nonpulsatile behaviors. Thus, the re-
sults provide guidelines for tailoring the functionality of re-
sponsive self-oscillating gels. On a fundamental level, the
findings reveal how the behavior of this unique nonequilib-
rium system, which encompasses coupled chemical and me-
chanical degrees of freedom, is affected by confinement.

II. METHODOLOGY

To simulate the dynamics of the BZ gels, we utilize our
recently developed computational approach for capturing the
three-dimensional behavior of these complex materials [12].
Via this approach, we obtained qualitative agreement be-
tween our results and various experimental findings [12]; in
particular, for small samples, we observed the in-phase syn-
chronization of the chemical and mechanical oscillations [7].
We also recover the decrease of the oscillation period with an
increase in the concentration of one of the substrates [6].

Our model is formulated in terms of the volume fraction
of polymer, ¢, and the dimensionless concentrations of the
dissolved reagent, u, and oxidized metal-ion catalyst, v. The
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governing evolution equations can be written as [13]

do
L _ V. (p)’ 1
P oV v (1)
d
d—l;=—vV VP + eGu,v, ), (2)
du ) (U u
—=—uV - v+ V. [V? +V- ((1l-¢p)V—
dt 1-¢ 1-¢
+ F(u,v,¢). (3)
Here %E §+V(1’)~V denotes the material derivative associ-

ated with the polymer velocity, v(?). We assume [13] that it is
solely the polymer-solvent interdiffusion that contributes to
the gel dynamics and neglect the total velocity of the
polymer-solvent system [14], so that ¢v? +(1—¢)v¥=0,
where v is the solvent velocity. The functions G(u,v, ¢)
and F(u,v,¢) are based on the Oregonator model for BZ
reactions in solution and are [13,15]

—a(1 = )?
Fuv.) = (1 ¢)u—u?— (1 - ¢)fv%, (4)
Gluv.4) = (1 - ¢)%u (1 - Po. (5)

The stoichiometric factor f and the dimensionless parameters
e and g have the same meaning as in the original Oregonator
model.

The dynamics of the polymer network is assumed to be
purely relaxational. Consequently, the constitutive equation
for the BZ gel can be written as [13]

6=-P(pv)+ covoiﬁ. (6)
b0

Here, I is the unit tensor, B is the strain tensor, and the
pressure P(¢,v) is defined as

P(¢,U) = W()s'm(¢’v) + C0v0¢/2¢0’ (7)

with the contribution from the osmotic pressure of the poly-
mer being [13]

7Tasm=_[¢+ln(1 - ¢)+X(¢)¢2]+X*U¢’ (8)

where x(¢)=xo+x1¢ is the polymer-solvent interaction pa-
rameter [16] and the constant x* >0 couples the gel dynam-
ics to the chemical reaction [15,17]. The gel’s degree of
swelling is given by N=(¢,/ ¢)!’>. We numerically solve the
above equations via our recently developed 3D gel lattice
spring model [12]; we apply no flux boundary conditions for
u on sample’s surface [12].

III. RESULTS AND DISCUSSION

To begin, we focus on the scenario shown in Fig. 1, where
a cubic gel sample is initially bound by hard walls on all
sides. (In the simulations, such confinement is implemented
by fixing the positions of all the surface nodes). For the
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FIG. 1. (Color online) (a) Confined gel sample (i.e., positions of
all the surface nodes are held fixed). (b)—(d) Sample after the
confinement is removed. Chemomechanical oscillations at times
t=154, 300, and 306, respectively. Sample size is 16X 16X 16
nodes, f=0.76 and £=0.7. All other parameters (unless specified
otherwise) are the same as in Ref. [11]. With this choice of param-
eters, the characteristic time and length scales in our simulations are
~1 s and ~40 um, respectively [16]. The color bar in (d) indi-
cates the concentration of oxidized catalyst, with v,,;,=2 X 10™* and
Umax=0.35.

chosen parameters, the confined BZ gel is in the nonoscilla-
tory stationary state [Fig. 1(a)]. At time t=1,, however, we
remove the confinement (i.e., allow the surface nodes to
move) and find that this release induces nondecaying chemo-
mechanical oscillations [Figs. 1(b)-1(d)]. In other words, by
simply lifting the confining surfaces, we can drive the system
from the steady state into the oscillatory regime.

To determine the generality of this effect, we first isolate
the critical parameters where the stationary solutions become
unstable for the two simplest limiting cases (cases A and B
defined below). We then extend our studies to understand the
dynamic behavior in a number of more complex scenarios.

Case A. For sufficiently small sample size and high poly-
mer mobility, we can neglect the contributions from diffu-
sion in Eq. (3) and assume that the evolution of ¢ follows the
changes in the reactant concentrations. The latter assumption
means that the elastic stress is instantaneously equilibrated
with the osmotic pressure, i.e.,

COUO[(¢/¢O)”3 - ¢/2¢O] = 7Tosm(¢7 l)) . (9)

From Eq. (9), we obtain the concentration of the oxidized
catalyst in this limiting case,

Viim( @) = (dx™) " [cquol (¢/ )" = d/2¢pp] + In(1 — p) + ¢
+ (X0+X1¢)¢2]-

Then, we find u and ¢ from

056208-2



SPATIAL CONFINEMENT CONTROLS SELF-...

dé ¢ | dviim(9)

o @l ar @ | 10

dt vim(P) dt & |U—Unm(¢’) (10)
du u do
- 1 —gar - . 11
dt 1-¢ dt |U—Unm(¢’) (11)

Using the above expression for vy, (¢), the right-hand sides
of Egs. (10) and (11) become R =c(¢,u)/b(¢) and

R, =ul(1 - ¢)* —ul+fla($)(1 - $)12¢ox"]
X{[(1 = ¢)’q = ul[(1 = $)*q +ul} = [w/(1 - ¢)]
X[c(g,u)/b($)],

respectively. Here,

a(¢)=col— p+2¢" 45 1+ 2¢[ b+ $*(xo + x19) + In(1
-9,

b(¢) =co(1 - P10 g5 = 3] + 6p[26 — $*[1 + x, (1
~ )] +2(1 - p)In(1 - P)],

and

c(¢,u) =38(1 = d)*¢la(@) = 2(1 = ) pepoux”].

We find the stationary solution {ug,, ¢} of Egs. (10) and
(11) by solving Gly—y. (=0, Flyzy, (=0 [18]. To analyze
the stability of the solution {u,, ¢}, we linearize Egs. (10)
and (11) with respect to small fluctuations and find the
growth rate of the fluctuations, p; ,=(T+\T?~4D)/2 (here,
T= [auRu+ &sz<p] |{u”¢ﬂ}’ D= [&uRuaqaRzp_ ‘9<pRu‘9uR<p] |{ust,¢ﬂ}’
and d,=d/ du).

Case B. Another limiting case is one where the entire
sample is constrained, namely, where all the faces of the 3D
sample are attached to hard walls so that the volume of the
sample remains constant. Again, we consider a small sample
and neglect diffusion in Eq. (3). Here, we fix ¢= ¢,,, so that
the dynamics is described solely by Egs. (2) and (3) with
¢= b, [19].

Figure 2(a) provides the stability map for cases A (solid
line) and B (dashed line) in terms of the important variables
of the BZ reaction, f and e&; recall that f characterizes the
stoichiometry of the reaction and & is proportional to the
concentration of malonic acid. This map indicates the critical
values of f=f° where the stationary solution is no longer
stable for the A and B cases; plots for responsive gel
(x*=0.105) are in light gray (red online) and for a less re-
sponsive sample (x*=0.05) are in dark gray (blue online). If
the values of {f, e} lie below the respective solid curves, the
sample remains in the steady state whether or not it is at-
tached to hard walls. If, however, the {f, e} values are above
the respective dashed curves, the sample undergoes oscilla-
tions (chemomechanical in case A and purely chemical in
case B since the mechanical oscillations are suppressed by
fixing the sample’s size). Note that f, increases with increas-
ing e.

The most interesting behavior, however, is observed when
the parameters are located between the solid and dashed
curves. Here, the behavior of the sample dramatically de-
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FIG. 2. (Color online) Dependence of f© on ¢ in (a) and on ¢ in
(b). For f> f., the steady state solution is unstable. Curves for the
limiting cases A (solid) and B (dashed) are shown in red (light gray)
for x*=0.105 and in blue (dark gray) for x*=0.05 [in (a) only].
Simulation results for the sample of size L XL XL nodes with L
=16 are shown in black, with the simulation points marked by filled
squares for the free sample (f%) and filled circles for the constrained

sample (f%).

pends on whether or not it is confined: the sample oscillates
when it is free and remains in the stationary state when it is
attached to the bounding surfaces. Figure 2(a) further reveals
that the size of this region increases with increases in & and
is larger for the more responsive sample (red curves). Figure
2(b) shows that the effect is robust for a large range of cross-
link densities; however, the size of the region between the
solid and dashed curves only weekly depends on the value of
Co-

For cases A and B, our simulations are in excellent agree-
ment with the linear stability analysis, as can be seen in Fig.
2 where the open symbols mark the simulation points [20].
However, for larger samples, where diffusion of the reagent
can no longer be neglected (and the mobility of polymer
network has a finite value), the analogous analytical analysis
is prohibitive and we must turn to the simulations to
determine the properties of the system. Consequently, we ran
simulations for a sample of size L X L X L with L=16 nodes
[i.e., a dimensionless linear size of (L—1)\,], x*=0.105,
and a range of f values (taken at intervals of Af
=2.5X1072). In Fig. 2(a), we plot the critical values of f that
correspond to the transitions between the stationary and the
oscillatory states for this larger sample when it is free (solid
squares) or confined on all sides (solid circles). The intercon-
necting dotted lines define the corresponding regions in the
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FIG. 3. (Color online) Gels confined at the top and bottom surfaces; sample sizes are 50 X 50 X 4 nodes in (a) and 6 X 6 X 50 nodes in (b).
Simulation times in (b) are t=6900, 6906, 6912, and 6924 (from left to right). The other parameters are the same as in Fig. 1.

phase maps; we mark these lines as f% and f; for the cases of
the free and constrained samples, respectively. Clearly, the
region where the effects of the confinement are the most
dramatic (4, <f<fy) is narrower for these large samples
than the smaller gels (marked in red). The effect of confine-
ment in this region, however, remains similar to the one ob-
served in limiting cases. Namely, the sample continues to be
in the stationary state as long as its sidewalls are held fixed
and undergoes oscillations when the confinement is removed.
This behavior was illustrated in Fig. 1, where we chose pa-
rameters in the middle of the f4 <f<f} region.

In general, the exact values of f§, f4 will depend on the
actual dimensions of the sample. However, the results of the
linear stability analysis for the two simplest examples and
the simulation results for the larger cubic samples provide us
with approximate guidelines for predicting the behavior of
various cases. Namely, if we select an f in the middle of the
region [f%.f3]), we anticipate that the free sample of any size
will oscillate, but a bounded sample will remain stationary.
We emphasize that this statement is valid for samples where
all the faces are either free or confined. We can, however,
also use the information in Fig. 2 to design the dynamic
properties of BZ gels by partially confining of the samples,
i.e., by bounding only some portions of the sample’s sur-
faces.

To illustrate the above point, we first consider scenarios
where only the top and bottom faces are held fixed and the
rest of the sample is unrestricted (see Fig. 3). We choose
different dimensions of the sample but keep the same physi-
cal parameters of the system; here, we set f=0.76 and &
=0.7 (in the middle of the [f4, /5] region in Fig. 2(a)). In the
limit of small sample thickness, one expects this gel film to
behave similarly to case B (where the entire sample was
constrained). Indeed, the sample in Fig. 3(a) remains in the
stationary state as long as its top and bottom faces are held
fixed. We now alter the gel’s dimensions, making the sample
thin and long in the z direction [see Fig. 3(b)]. In contrast to
the case in Fig. 3(a), the majority of the sample is now un-
constrained; hence, we anticipate its behavior to be similar to
a nonconfined sample. Figure 3(b) confirms this prediction,

showing two traveling waves that are generated at the top
and bottom walls; these waves propagate and collide at the
center of the sample [21].

Finally, we turn our attention to examples of nonuniform
confinement; we consider thin samples that are attached to
hard walls everywhere except two specific regions, which are
marked by a white circle of radius R, and a rectangle with
width W, [see Fig. 4(a)]. We choose the value of f higher
than f§ for the case in Fig. 4(b) and within the region [f5, /]
for the case in Fig. 4(c). [The selected {f,e} are marked in
Fig. 2(a).] In Fig. 4(b), a traveling wave propagates through-
out the sample, with only small distortions caused by the
presence of the free regions. The situation is dramatically
different, however, in Fig. 4(c), where the oscillations are
observed only within the free regions, while the regions that
are held fixed remain in the stationary state [22]. Thus, one
film contains well-defined regions of both oscillatory and
nonoscillatory behaviors.

(@),,a
SK

Y

FIG. 4. (Color online) (a) Schematic of the sample (top view).
White areas are unbounded within the top and bottom surfaces.
Sample size is 120 X 40X 2 nodes; Ry=17 and W,=20 nodes and
the separation between the centers is 60 nodes. (b) f=0.88, and
times are r=3900 and 3906. (c) f=0.78, and times are t=3912,
3918, and 3930 (from top to bottom).
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Figure 4(c) reveals that “cut outs” in the confining sur-
faces provide an effective means of controlling the oscilla-
tions of active BZ gels and hence the functionality of the
material. Different arrangements or shapes of these cut outs
can be utilized to produce different dynamic behaviors. For
this reason, the phase map in Fig. 2 is particularly valuable
since it identifies useful parameters for creating films with
distinct pulsations in an otherwise stationary layer.

IV. CONCLUSIONS

In summary, we determined regions in parameter space
where the dynamic behavior of BZ gels can be altered by the
introduction or removal of confining walls. This behavior
opens up opportunities for harnessing the gels for novel
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technological applications. For example, the oscillations in-
duced by the unintentional removal of a surface could be
used as an indicator, signaling that the structural integrity of
a system has been compromised. Furthermore, the inten-
tional release of a confined sample—or just a portion of the
sample—provides a means of tuning the mechanical action
of the system. Hence, by manipulating the nature of the con-
finement, one can not only tailor the functionality of these
systems but also impart new functionality into active biomi-
metic devices.
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